新浪新闻 国内

华中农大近期科学研究进展

华中农业大学

关注

原标题:华中农大近期科学研究进展

来源:华中农业大学

揭示细胞周期的“刹车”机制

近日,华中农业大学生命科学技术学院严顺平教授课题组研究发现了蛋白激酶ATR 和WEE1的下游新组分,完善了ATR信号转导通路,揭示了细胞周期的“刹车”机制。

所有生物都需要把正确的遗传信息(DNA)传递给下一代。但是,DNA 不断地受到各种体外和体内因素的伤害。为了维持基因组的稳定性,所有生物都进化出了复杂而精细的DNA损伤应答机制,包括激活细胞周期检验点、DNA修复、转录调控和细胞凋亡等。细胞周期检验点的激活能使细胞周期进程暂停,以保证细胞有充足的时间进行DNA修复,在DNA损伤应答中发挥关键作用。

蛋白激酶ATR是DNA损伤修复通路中的最核心调控蛋白之一,主要参与DNA复制胁迫应答。在动物中,ATR主要通过调控细胞周期检测点激酶CHK1和细胞周期调控因子CDC25来发挥作用。但是,植物缺少CHK1和CDC25 的同源蛋白,因此ATR在植物中的作用机理尚不清楚。

王利利等人通过遗传筛选atr突变体的抑制子发现,突变MAC复合体(参与前体mRNA的剪接)的核心亚基PRL1能抑制拟南芥atr突变体对DNA复制胁迫诱导剂羟基脲(HU)的超敏感性。通过进一步的遗传学和生物化学研究,他们发现,在DNA复制胁迫发生时,ATR可以激活下游的蛋白激酶WEE1,WEE1通过磷酸化PRL1促进它的降解,PRL1的降解破坏了MAC复合体的功能,导致细胞周期基因的前体mRNA不能被正常剪接,从而阻制细胞周期进程。该研究发现了ATR 和WEE1的下游新组分,完善了植物的ATR信号转导通路,揭示了细胞周期调控的新机制,具有重要的科学意义。

英文摘要:

DNA damage response is a fundamental mechanism to maintain genome stability. The ATR-WEE1 kinase module plays a central role in response to replication stress. Although the ATR-WEE1 pathway has been well studied in yeasts and animals, how ATR-WEE1 functions in plants remains unclear. Through a genetic screen for suppressors of the Arabidopsis atr mutant, we found that loss of function of PRL1, a core subunit of the evolutionarily conserved MAC complex involved in alternative splicing, suppresses the hypersensitivity of atr and wee1 to replication stress. Biochemical studies revealed that WEE1 directly interacts with and phosphorylates PRL1 at Serine 145, which promotes PRL1 ubiquitination and subsequent degradation. In line with the genetic and biochemical data, replication stress induces intron retention of cell cycle genes including CYCD1;1 and CYCD3;1, which is abolished in wee1 but restored in wee1 prl1. Remarkably, co-expressing the coding sequences of CYCD1;1 and CYCD3;1 partially restores the root length and HU response in wee1 prl1. These data suggested that the ATR-WEE1 module inhibits the MAC complex to regulate replication stress responses. Our study discovered PRL1 or the MAC complex as a key downstream regulator of the ATR-WEE1 module and revealed a novel cell cycle control mechanism.

论文链接:

https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkaa1082/6101606?searchresult=1

探明植物病原真菌糖基化修饰机制

近日,华中农业大学植物科学技术学院、农业微生物学国家重点实验室陈小林课题组系统总结了蛋白糖基化修饰调控植物病原真菌的研究新进展,并以病原真菌侵染循环过程为线索,梳理了糖基化修饰调控真菌致病过程,以及真菌与植物互作的主要机制。

糖基化在真核生物中是一个高度保守并广泛存在的蛋白质修饰类型,其包括N糖基化修饰,O糖基化修饰以及GPI锚定修饰等主要类型。糖蛋白主要在内质网和高尔基体中被修饰,并通过细胞分泌系统分泌到质膜,细胞壁以及胞外空间等。糖基化修饰可以通过影响糖蛋白的折叠、分泌、定位、丰度以及活性等来调节糖蛋白的功能。尽管糖基化修饰在生命过程中至关重要,但其在植物病原真菌致病过程,真菌与植物互作等过程中的功能却远未得到足够的认识。

一直以来,对蛋白质糖基化修饰的认识主要来自对酵母和哺乳动物细胞的研究。在过去的十年中,关于蛋白糖基化修饰调控植物病原真菌的研究获得了一系列新进展,尤其是在稻瘟菌和玉米黑粉菌的研究中均发现了一些关键的调控新机制。陈小林课题组系统总结了这些重要的新进展,并以病原真菌侵染循环过程为线索,梳理了糖基化修饰调控真菌致病过程,以及真菌与植物互作的主要机制,为该领域未来的研究提供了厘清了思路。糖基化修饰的研究加深了对植物病原真菌发病机理的理解,有助于找到真菌病害防治的新策略,同时糖基化修饰的关键酶和关键靶标,也可能为开发新型杀菌剂提供新思路。

首先,在真菌侵染结构形成和穿透寄主过程中,糖基化修饰的调控机制主要是O-糖基化mucin蛋白Msb2可以感知植物表面信号,从而激活附着胞形成所需的MAPK信号通路,并调控附着胞介导的穿透寄主过程。GPI锚定修饰可以通过GPI锚定蛋白,特别是Gel家族蛋白的积累,影响附着胞细胞壁的完整性,从而帮助真菌穿透寄主。此外,N-糖基化蛋白也可能影响附着胞介导的穿透寄主过程,例如参与糖原和脂质利用、细胞壁合成和内质网质量控制(ERQC)系统的蛋白均受到N糖基化的修饰。

其次,在真菌在植物细胞内建立活体寄生过程中,不同糖基化修饰的调控机制主要是在真菌侵染菌丝扩展过程中,大量蛋白质的折叠和分泌受到ERQC系统的调控,而ERQC系统则受到N-糖基化修饰的精细调控。同时,N-糖基化不但可以调控效应蛋白的分泌(如通过修饰玉米黑粉菌Pdi蛋白),而且可以直接调控效应蛋白的功能(如稻瘟菌Slp1蛋白),可能作为一种普遍的策略,帮助真菌逃避寄主免疫。O-糖基化修饰也可以影响效应蛋白的功能,如通过修饰玉米黑粉菌Pit1蛋白从而影响效应蛋白Pit2的功能。作为真菌细胞壁重要组成部分之一,GPI锚定蛋白主要是糖蛋白,它们可以起到屏障作用,保护真菌细胞壁PAMPs不被寄主识别,从而实现免疫逃避。同时,GPI锚定修饰也可以通过影响效应物分泌来调控真菌活体寄生过程。

英文摘要:

Glycosylation is a conserved set of post‐translational modifications that exists in all eukaryotic cells. During the last decade, the role of glycosylation in plant pathogenic fungi has received significant attention and considerable progress has been made, especially in Ustilago maydis and Magnaporthe oryzae. Here, we review recent advances in our understanding of the role of N‐glycosylation, O‐glycosylation and glycosylphosphatidylinositol (GPI) anchors during plant infection by pathogenic fungi. We highlight the roles of these processes in regulatory mechanisms associated with appressorium formation, host penetration, biotrophic growth and immune evasion. We argue that improved knowledge of glycosylation pathways and the impact of these modifications on fungal pathogenesis is overdue and could provide novel strategies for disease control.

论文链接:

https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17207

在沼液中实现了抗生素的光催化高效降解

近日,华中农业大学工学院袁巧霞课题组研究人员在沼液中实现了抗生素的高效降解,解释了沼液理化特性与抗生素降解的相关性,为沼液中污染物的去除提供了理论依据和参考数据。

抗生素被广泛使用以预防和治疗动物疾病。然而,大量的抗生素在动物体内难以吸收消化而随粪尿排除体外,并在厌氧发酵后仍部分残留在沼液中。随着沼液在农田的广泛施用,残留的抗生素在土壤和水体中积累,对生态系统和人类健康构成潜在威胁。因此,从生态环境和人类健康的角度来看,去除沼液中的抗生素对沼液的安全利用至关重要。

基于此,研究人员利用光催化技术以TiO2为催化剂,探究了光催化降解沼液中抗生素的最佳工艺参数,并对不同预处理后的沼液中抗生素的降解进行了研究。结果表明,高压汞灯对沼液中抗生素的降解具有显著效果,降低沼液处理深度能有效提高抗生素的降解率。最佳工艺条件下,四环素类抗生素的平均降解率达到93.14%。絮凝预处理能有效降低沼液的色度、浊度和总固体含量,进而提高抗生素的降解率。

沼液中抗生素的迁移和转化途径主要包括三个阶段:沼液中有机物等对抗生素的吸附、催化剂对抗生素的吸附以及抗生素的光催化降解。通过对不同阶段下沼液理化性质与抗生素降解率进行相关性分析发现,沼液的pH与浊度对抗生素的吸附阶段影响较大,抗生素去除率与沼液浊度、色度等呈正相关。沼液的色度和pH对抗生素的光催化阶段影响较大,抗生素去除率与沼液色度、浊度等呈负相关。本研究为实际工程中沼液中抗生素的光催化降解提供了理论依据和参考数据。

英文摘要:

The high concentration of antibiotics in liquid digestate makes it unviable for use as fertilizer on farmland. This study designed a system for antibiotic degradation and applied the photocatalytic process to degrade tetracyclines in liquid digestate. The effects of different operational variables (e.g., radiation source, TiO2 concentration, photocatalytic time, temperature, and depth of Liquid digestate) on the removal of tetracyclines were analyzed and optimal operation conditions were obtained. The correlation between the physicochemical properties of liquid digestate and tetracyclines removal was also analyzed. The results indicate that a high pressure mercury lamp is effective for the photocatalysis of tetracyclines in liquid digestate. Tetracyclines removal increased with increasing TiO2 concentration, photocatalytic time, and decreasing liquid digestate depth. However, the temperature of liquid digestate had little effect on the removal of tetracyclines. Under the high pressure mercury lamp, the removal of tetracycline, oxytetracycline, and chlortetracycline reached 94.99%, 88.92%, and 95.52%, respectively, under the optimum conditions (TiO2 concentration of 1.0 g/L, liquid digestate depth of 20 mm, and photocatalytic time of 120 min). In addition, the tetracyclines concentration, pH, total solid, and chroma of liquid digestate all had significant effects on the photocatalytic process. Flocculation pretreatment can improve photocatalytic efficiency by reducing the chroma, pH, and TS of liquid digestate. Our findings show that photocatalysis is an effective method for removing antibiotics in liquid digestate and has the potential for application to pollutant removal. Furthermore, our results provide conditions for the popularization and application of apparatus for the degradation of antibiotics in liquid digestate.

论文链接:

https://www.sciencedirect.com/science/article/pii/S1385894720344399?via%3Dihub

文| 王利利 刘彩云 王攀攀

编辑 | 刘涛

加载中...