无需参数访问!CMU用大模型自动优化视觉语言提示词 | CVPR’24如何做到的?实验结果在文生图任务中的应用团队介绍
无需参数访问!CMU用大模型自动优化视觉语言提示词 | CVPR’24
2024-11-0612:07:45 来源:量子位
全新的黑盒优化策略
林之秋 投稿
量子位 | 公众号 QbitAI
视觉语言模型(如 GPT-4o、DALL-E 3)通常拥有数十亿参数,且模型权重不公开,使得传统的白盒优化方法(如反向传播)难以实施。
那么,有没有更轻松的优化方法呢?
就在最近,卡内基梅隆大学(CMU)的研究团队对于这个问题提出了一种创新的“黑盒优化”策略——
通过大语言模型自动调整自然语言提示词,使视觉语言模型在文生图、视觉识别等多个下游任务中获得更好的表现。
这一方法不仅无需触及模型内部参数,还大幅提升了优化的灵活性与速度,让用户即使没有技术背景也能轻松提升模型性能。
该研究已被 CVPR 2024 接收。
如何做到的?
大多数视觉语言模型(如 DALL-E 3、GPT-4o 等)并未公开模型权重或特征嵌入,导致传统依赖反向传播的优化方式不再适用。
不过,这些模型通常向用户开放了自然语言接口,使得通过优化提示词来提升模型表现成为可能。
然而,传统的提示词工程严重依赖工程师的经验和先验知识。
例如,为提升 CLIP 模型的视觉识别效果,OpenAI 花费了一年时间收集了几十种有效的提示词模板(如 “A good photo of a [class]”)。
同样,在使用DALL-E 3和Stable Diffusion等文生图模型时,用户往往也需掌握大量提示词技巧才能生成满意的结果。
那么,有没有替代人类提示词工程师的方法?
有的 CMU 团队提出了一种新策略:用 ChatGPT 等大语言模型自动优化提示词。
像提示词工程师利用反馈改进提示词一样,CMU 的方法将正负反馈交给 ChatGPT,以更高效地调整提示词,具体过程如图所示:
这种优化过程类似于机器学习中的“爬山法”(hill-climbing)策略,不同之处在于大语言模型可以自动分析提示词表现,从正负反馈中找到最优改进方向。
研究团队利用这一特性来更高效地优化提示词。这个过程可以用以下步骤概括:
经过多轮迭代,最终返回得分最高的提示词作为优化结果。
实验结果
通过这一方法,CMU 团队在无需人类提示工程师参与的情况下,在多个小样本视觉识别数据集上取得了最佳准确性,甚至超越了传统的白盒提示词优化方法(如 CoOp)。
例如,在食物识别任务中,ChatGPT 自动将提示词调整为识别“多样化的美食和原料”,从而提升了模型的表现。
研究团队还证明了,通过 ChatGPT 黑盒优化得到的提示词不仅适用于单一模型架构,还能在不同模型架构(如 ResNet 和 ViT)之间泛化,并且在多种模型上表现优于白盒优化得到的提示词。
这一系列实验证明,大语言模型能够从提示词的性能反馈中提取出隐含的“梯度”方向,从而实现无需反向传播的模型优化。
在文生图任务中的应用
CMU 团队进一步探索了该方法在生成任务中的应用潜力。
在文本到图像生成(T2I)任务中,ChatGPT 能够自动优化提示词,从而生成更符合用户需求的高质量图像。
例如,对于输入描述“一个动物注视着一个人”,系统可以通过逐步优化提示词来提升生成图像的准确性。
此外,这一方法还适用于提示反演(Prompt Inversion)。
提示反演是一种根据现有图像反推生成模型输入提示词的技术,简单来说,就是通过图像生成能够再现其特征的文本描述(提示词)。
此外,研究团队还指出,提示反演可以帮助用户快速定制特定的图像效果,例如“让这只狗变成站立姿势”或“让背景变成夜景”,从而生成符合特定需求的图像。
CMU 团队表示,提出的黑盒优化范式突破了传统模型调优的限制,不仅在图像分类和生成任务中表现出色,还展示了广泛的应用潜力。
这一方法无需访问模型权重,仅通过“文本梯度”实现精准优化,具备强大的扩展性。
未来,黑盒优化有望应用于实时监控、自动驾驶、智能医疗等复杂动态场景,为多模态模型的调优带来更加灵活高效的解决方案。
团队介绍
团队的一作刘士弘(Shihong Liu)是卡内基梅隆大学的研究生毕业生,曾任机器人研究所研究员。
目前在 北美Amazon 工作,负责大型分布式系统的计算和大语言模型驱动的 AI Agent 的开发。
团队的共同一作林之秋(Zhiqiu Lin)是卡内基梅隆大学的博士研究生,专注于视觉-语言大模型的自动评估与优化。
Zhiqiu Lin在CVPR、NeurIPS、ICML、ECCV等顶级会议上发表了十数篇论文,并曾荣获最佳论文提名和最佳短论文奖等。
Deva Ramanan教授是计算机视觉领域的国际知名学者,现任卡内基梅隆大学教授。
他的研究涵盖计算机视觉、机器学习和人工智能领域,曾获得多项顶级学术荣誉,包括2009年的David Marr奖、2010年的PASCAL VOC终身成就奖、2012年的IEEE PAMI青年研究员奖、2012年《大众科学》评选的“十位杰出科学家”之一、2013年美国国家科学院Kavli Fellow、2018年和2024年的Longuet-Higgins奖,以及因其代表性工作(如COCO数据集)获得的Koenderink奖。
此外,他的论文在CVPR、ECCV和ICCV上多次获得最佳论文提名及荣誉奖。他的研究成果对视觉识别、自动驾驶、和人机交互等应用产生了深远影响,是该领域极具影响力的科学家之一。
CVPR’24论文链接:
https://arxiv.org/abs/2309.05950
论文代码:
https://github.com/shihongl1998/LLM-as-a-blackbox-optimizer
项目网站:
https://llm-can-optimize-vlm.github.io
版权所有,未经授权不得以任何形式转载及使用,违者必究。